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SUMMARY

The results of experiments to determine the lateral/directional dynamic
stability characteristics of a quad configuration, ducted-propeller V/STOL
aircraft at four low- speed/hlgh duct-incidence trim conditions (i = 80° 5

, 60° , and 50° ) are presented. Lateral/d1rect10nal transient responses
in various degrees of freedom were measured using a dynamic model on the
Princeton Dynamic Model Track. The data presented include time histories
of the model motions in various lateral/directional degrees of freedom that
occur when the model is disturbed from trimmed flight.

The dynamic model employed in these experiments is a generalized research
model arranged to represent closely the Bell X-22A V/STOL aircraft.

The data presented in this report comprise the third phase of a three-
phase investigation of the dynamic stability characteristics of a quad
configuration, ducted-propeller V/STOL aircraft at low speeds and high
duct incidences. The other two phases pertain to the lateral and longi-
tudinal hovering stability characteristics, presented in Reference 1, and
the longituiinai characteristics at four low-speed/high-duct-incidence
trim conditions presented in Reference 2.
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INTRODUCTION

A series Hf experiments to determine the lateral/directional dynamic sta-
bility chwracteristics of a quad configuration, ducted-propeller V/STOL
aircraft .t low speeds and high duct incidences were conducted in the
Princeton Dynamic Model Track. The data presented in this report, Phase
IIT of a three-part test program, consist of time histories of the lateral/
directional transient response characteristics of a dynamic model at four
low-speed trim conditicns in transition flight. Reference 1 presents ex-
perimental data from Phase I, an investigation of the hovering stability
characteristics, and Reference 2 presents data from Phase II, concerned
with the longitudinal dynamics at the same trim conditions as those of
Phase III.

The dynamic model employed in these tests is shown in Figures 1 and 2. L
The model, described in Reference 3, was designed as a general resesrch
model with variable geometry and lifting system configuration such that a
variety of quad V/STOL designs could be simulated. 1In the configuraticn
selected for the tests described here, the model closely resembles &
0.145-scale dynamic 1 >del of the Bell Aerosystems X-22A V/STOL research
aircraft. The model differs from actual aircraft (as given in Reference L)
in certain minor details, which are described in the section entitled
DESCRIPTION OF APPARATUS, under MODEL.

The test program consisted of measurement of the transient response charac-
teristics of the dynamic model in various lateral/directional degrees of
freedom when disturbed from trimmed level flight at constant flight ve-
locity. One of the features of the Princeton Dynamic Model Track
(described in detail in Reference 5) is the ability to use the servo
carriage to restrict the degrees of freedom of the model, such that re-
sponse measurements can be conducted in various combinations of degrees of
freedom as well as the three-degree-of-freedom lateral/directional motion.
These restricted degree-of-freedom tests greatly assist in the analysis of
the data for stability derivatives of the vehicle. Therefore, response
measurements in this investigation included three-degree-of-freedom ex-
periments (roll angle/yaw angle/lateral velocity), two-degree-of-freedom
measurements (roll angle/yaw angle and roll angle/lateral velocity), and
single-degree-of-freedom measurements (roll angle only and yaw angle only).
The single-degree-of-freedom measurements are particularly useful for a
direct determination of the angular damping characteristics of the vehicle.

The test conditions covered are given in Table I.
All data are prevented in model scale and may be interpreted in terms of

the full-scale vehicle (which the model closely resembles), using the
conversion factors given in Table II.




DESCRIPTION OF APPARATUS

TEST FACILITY

The Princeton University Dynamic Model Track is a facility designed ex-
pressly for the study of the dynamic motions of helicopter and V/STOL
models at equivalent fiight speeds of up to 60 knots (for a one-tentn
scale model). Basic components of the facility include a servo-driven
carriage riding on a track 750 f:et long, located in a building with a
cross section of 30 by 30 feet; the carriage has an acceleration potential
of 0.6g and a maximum speed of 4O feet per second. A detailed description
of the faciiity and the testing techniques employed may be found in
Reference 5.

A model can be (ttached to the carriage by one of severr” booms. The
mount used to conduct lateral/directional investigation is shown in
Figure 1., This mount permits lateral motion of the model in a direction
perpendicular to the plane of the vertical and the carriage velccity
vector. The model is supported on a three-axis gimbal system that allows
selection of any or all of the three angular degrees of freedom. Lateral
relative motion of the model with respect to the model-mount carriage is
sensed and used to command this carriage to follow the lateral motion of
the model in a closed-loop fashicn. Thus the mass of the mount carriage
does not influence the motions of the model. This method of testing may
be considered to be similar to dynamic flight testing, but considerably
more control over the experiment is possible.

The dynamic tests conducted during this program included one-, two-, and
three-degree-of-freedom motion measurements. The transient tvehavior of
the model was dominated in general by an unstable oscillation, so no pre-
determined control inputs were used to excite the model motions.

MODEL

The model is shown in Figure 2, and a three-view drawing is presented in
Figure 3. The model's pertinent dimensions and inertia characteristiecs
are listed in Table III, and the model reference stations are defined and
compared with full-scale X-22A reference stations in Figure L.

This dynamic model is powered by a 200-volt, 40O-cycle, 3-phase electric
motor. The motor drives the four ducted propellers through a central
transmission and various right-angle gearboxes. The aerodynamic shape of
the model is obtained through the use of a Fiberglas skin with Styrofoam
stiffeners. The propeller blades are¢ made with a plastic foam core and
Fiberglas skin. The geometric characteristics of the propeller are shown ~
in Figure 5, and the duct geometry is shown in Figure 6., The duct shape
is identical to that of the Bell Aerosystems X-22A aircraft.




Model control positions are set fram a control console on the carriage.
The blade pitch angles on each of the four propellers are electrically
controllable. Also, the deflection angles of the elevons are electrically
controllable. All of these control systems are closed-loop position
controls and are used as such in the portions of the experiments involving
feedback to alter the transient motions of the model. The dynamic charac-
teristics of these feedback loops are such that the time response of the
controls is negligible in the frequency range of interest. Although the
control servo loops are nonlinear, using polarized relays for power ampli-
fication, they can be characterized as having a closed-loop natural
frequency of approximately 10 cycles per second with a damping ratio of
approximately seven-tenths, The servo gear ratios were selected so that
the rate limits arising from the rpm limitations of the control drive
motors were equal to, or greater than, scaled rate limits determined from
full-scale X-22A values.

This research model differs from the Bell Aerosystems X-22A flight aircraft
in the following particulars:

1. The elevon on the model differs from that on the full-scale
aircraft. The model elevon has no movable surface forward of the
hinge line, and its hinge line is located below the trailing edge
of the duct, as shown in Figure 7. While these differences would
affect the control effectiveness and the control loads, they
would not be expected to have any significant effect on the
dynamic motions.

2. The duct rotation point is at a different location on the model
(84 percent c) than on the full-scale aircraft (55 percent c).

With the ducts at 90 degrees incidence, the propeller hubs are
in the same relative position on the model as on the full-scale
aircraft. The center of gravity of the model is higher (by 1.2
percent c) on the model with respect to the propeller hubs than
on the full-scale aircraft.

3. As noted in Table I, the vertical tail used on the model for some
single-degree-of-freedom experiments was smaller than the scaled
X-22A vertical tail. A comparison of the two tail sizes tested
is shown in Figure 3.

The only one of these differences that may influence the lateral/
directional stability characteristics is the vertical tail size. There-
fore the single degree of freedom in yaw experiments were done with both
tail sizes at all but the lowest speed trim condition. All multiple-
degree-of-freedom experiments were performed with the large (scale size)
vertical tail.




EXPERIMENTAL RESULTS AND DISCUSSION

The experimentally determined trim conditions are shown in Figure 8 as
graphs of trim velocity Uf and average propeller pitch B ,sp as a function
of duct incidence. The elevons were set at zero deflection angle for all
tests. All experiments were conducted with the vertical aerodynamic force
produced by the model equal to 51.5 pounds in trimmed flight, corresponding
to a full-scale vehicle gross weight of 16,700 pounds at sea level. Strain
gages were employed on the model mounting system to determine longitudinal
force trim. By observing the strain gage readings, the model controls were
set such that the vertical aerodynamic force was equal to the desired value
of 51.5 pounds and the horizontal aerodynamic force was equal to zero
(corresponding to level flight) at all trim conditions investigated. The
trim conditions are identical to those of Reference 2. To eliminate
extraneous moments from the gimbal mounting system, as were present in the
tests described in Reference 6, all tests were conducted with the model
free about the pitch axis. The pitch angle was maintained at its trim
value by attitude and rate feedback about the pitch axis. The performance
of this system was such that the pitch angle may be considered to be
constant for all of the data presented here,

Transient response characteristics are presented about a gimbal axis
system, as discussed in the Appendix. Time histories of the lateral/
directional transient responses of the quad configuration V/STOL aircraft
model from the level flight trim conditions at four duct incidences

(id = 80°, 70°, 60°, and 50°) are presented in Figures 9 through 30. In

most test conditions repeat data runs have been presented to aid in the
analysis of the data and to indicate the repeatability of the experiments.

The responses shown include one-, two-, and three-degree-of-freedom time
histories as discussed previously. The single--degree-of-freedom responses
are presented to permit a direct determination of the angular damping
characteristics of the model. These runs are presented in Figures 9 and
10, 14 through 16, 20 through 22, and 25 through 27. For the single-
degree-of-freedom tests with the small vertical tail, mechanical springs
were added to the model to provide a restoring moment about the model roll
and yaw axes, such that the single-degree-of-freedom motions will be
oscillatory. In this way the time histories are more readily analyzed for
angular damping derivatives. The angular spring constants and the inertia
characteristics of the model are given in Table III. Data are presented
with the model motor off and the rpm equal to zero so that the mechanical
damping of the model mounting system may be determined. This damping, due
to friction, is very small compared to the total damping with the model
running, but should be subtracted from the damping measured with the model 4
running to determine the aerodynamic damping. For testing convenience the
single- and multiple-degree-of-freedom experiments were performed at
different pivot axis locations.




In contrast to the data of References 1 and 2, no feedback was used about
the roll and yaw axes in these experiments. The lateral/directional
motions of the model were dynamically unstable at all test conditions in-
vestigated.

All of the transient response time history data presented in Figures 9
through 30 have been conditioned by second-order filters with natural
frequencies of 5 Hz and damping ratios of 0.7. However, in some of the
model data channels, particularly the rate gyros and linear velocity
tachometer, residual signals in the bandwidth of 2 to 10 Hz can still be
seen. These signals are due to the flexible modes of mocion of the model
and/or gyro support structures or the high frequency transient response of
the lateral servo and are not associated with the natural model rigid-body
dynamic motions under investigation. 1In some cases, as for example in
Figure 17, where there is a possibility that these spurious signals could
be misinterpreted as data, a line has been faired to represent the model's
true dynamic motions in the absence of the high frequency signals. In
other cases, the transient response of the filters to momentary data loss
within the telemetry system has produced data "drop-outs" which have also
been faired to avoid misinterpretation.

The model angular velocity initial conditions at release are occasionally
masked by the high frequency noise content of the rate gyro signals prior
to release. Agein, these data should not be interpreted as the rigid-body
initial conditions; however, these portions of the time histories were not
faired since the first portion of the transient response is of little
value for analysis purposes due to the random excitation of the model
transient motion. In general, all of the time histories of Figures 9
through 30 start at time zero minus, prior to release, and the initial
conditions are as indicated on the data record. Exceptions to this are
some single-degree-o>f-freedom data with model rpm equal to zero where time
zero has been deleted because the initial excursions are of no value for
analysis purposes.




TABLE I. SUMMARY OF TEST CONDITIONS _ a
Tests conducted at model 1ift = 51.5 1b (except where rpm = 0).
All tests conducted without stability augmentation.
Duct Average Propeller Trim Run | Fig. Degrees
Incidence Propeller Speed Velocity | Nos. | Nos. of
! id B o Uof Freedom
(deg) (deg) (rpm) (ft/sec)
05
6780 1 [
{ 706 g o*
0 0 710
715
6780 12 718 | 10we g
0 0 719
80 05.0 1131 | 11 ¢-Y
1122
1123
112
6780 10 mg 12 $-ve
F 1129
1130
1136
1137 |13 B-Y-v,
1138
733
6780 21 736 | 1bwx | g
0 0 737
73
26.4 6780 21 7h69>
15%* ¥*
0 0 742
1239
70 6780 21 ] 16 Y
242
1164
25.6 6780 21 165 17 ¢-Y
142
26.4 6780 21 156 18 ¢V
¢ 68 1157
25. 780 21
L1162 |19 ] ¢-Y-ve
6

T



TABLE T - Continued

Tests conducted at model 1ift = 51.9 1lb {except where rpm = 0).
All tests conducted without stability augmentation.
Duct Avorage Propeller Trim Run |{Fig. Degrees
Incidence Propeller Speed Velo« ity | Nos. |Nos. of
Freedom
jd B.vsn Uof
(deg) (deg) (rpm) (ft/sec)
7
6780 27 722 coxx | g
0 ¢ 758
26.4 . 759
o180 =l 761 | 21% | yx
0 0 763
6780 27 1224 | 22 Y
60 1171
1172
1173 |23 ¢-Ve
1174
25. 6780 2
5.9 7 9 1177
1180
24 -y-
1181 et Sl
1184
773
6780 36 25 *
175 2
0 0 778
779
!
26.h 6780 36 782 26 *% y*
0 0 783
50 1206
6780 36 1508 | 27 4
1199 | 28 P-¥
1191 | o9 ¢-v
2h.8 6780 38 |11 !
1193
1195 | 3° B-Y-ve

*Mechanical spring in place.
**Small vertical tail.




TABLE II. SCALE FACTORS FOR DYNAMIC MCDEL SIMILARITY

Multiply full-scale property by scale factor to obtain model property.
For A\{ = 0.1453

Linear dimension AL 0.1453
Area K. 2.112 x 102
Volume, mass, force e ‘ 3.071 x 10°3
Moment e 4,463 x 10°*
Moment of inertia i 6.487 x 10°°
Linear velocity R a8 0.3812
Linear acceleration )‘Lo 1.000
Angular velocity — 2.623
Angular acceleration A 0.1453
Time o 0.3812
Frequency by =002 2.623
Reynolds number A8 5.541 x 10°2
Mach number e 0.3812

model linear dimension

where A, =
full-scale linear dimension
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pivol axis
blade pitch
axi
Model scale WL 22.38 >‘4—‘—
(full scale WL 154)
Model scale WLI323  \ 90'
(full scole WL 91) \
Modei scale FS 29.07 'Hﬂd-i In'r:h duci rototlon

(full scale FS 200)

Note' |)Reference FS and WL locations shown
do not change with duct rotation.
2)Pivot point is reference point for

aerodynamic measurements of complete
aircraft.

3) Model angular motions measured about
pivot point.

Note: l.)i,-i, axes are space fixed axes

aligned with the initial position of the z
gircraft principal axis system. !

_rll
£
=
£

2)The angle 1) is the angle between Wy Vo, vy
the fuselage horizontal reference line
and the model principal axis.

(positive as shown) W,

Figure 4. Model Reference Stations, Location of Model Center
of Gravity and Axes Systems.
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THICKNESS—-CHORD RATIO, t/b

BLADE ANGLE, B, deg

i \ T 1T T 7T
PROPELLER ACTIVITY FACTOR =I68
\oesncn LIFT COEFFICIENT =430

3

.2

1 e

0

0] 2 4 .6 8 1.0
45 A8
40 16
30 b/ 12
25 — .10
20 \ .08
1S N 06
10 >\ 04
N\ B
5 02
\\.
0] 0
0 2 4 6 8 1.0

Figure 5.

RADIAL STATION, r/R

Geometric Characteristics of Three-Bladed Model
Propellers.
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CHORD- DIAMETER RATIO, b/d
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ELLIPSE
— 8.2
| 6.0 _\ \ l
L X
¥ -
ri2 o \<*-RADIUS
STRAIGHT
N LINE

275

ALL DIMENSIONS ON ABOVE

DRAWING IN INCHES Fi

(MODEL SCALE) /
38

Figure 6. Geometric Characteristics of Scaled Model Ducts.
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p— T

TRIM VELOCITY, U, f¥/sec

PROPELLER PITCH
78R deg

AVERAGE
B.

45

40

35

30}
25

20

10

S
OE\I 4l
0 40 80 [ 1¢] 70 80

DUCT INCIDENCE, iq, deg

90

Figure 8.

‘éo\f«to 50 60 70 80

DUCT INCIDENCE, iy, deg

Experimental Data, Model ''rim Conditions.
Model Lift = 51.5 1b, rpm = 6780.
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Figure 10. Directional Transient Response. One Degree of Freedum, Y.

s 80°, B.rse = g5a2t ’ ABO 5
Small Vertical Tail, Spring Restrained.
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Figure 12, Lateral/Directional Transient Response. Two Degrees of
Freedom, ¢-v.. 14 = &oe, uof = 10 ft/sec, B .5 = 25.2°,

rpm = 6780, AB, = 0.5°, Large Vertical Tail.
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APPENDIX
EQUATIONS OF MOTION

Linearized equations of motion applicable to the analysis of various ex-
perimentally measurel responses are presented in this appendix.

The lateral/directional equations of motion that describe the small
perturbation motion of an aircraft from initially level flight are
(Reference 7) .

V-Yv+Ur-g@-Wp=0

-va-Lx.r+i>-Lpp=O

-Nyv+r-Nr-Np=0 (1)

These equations are written with respect to principal axes, inclined nose
down from the horizon by an angle T (Figure L).

The gimbal mount supporting the model provides roll freedom about the
principal body axis (X" ), and yaw freedom about a space-fixed axis (Z.),
as shown in”Figure 3’1. It is not possible to provide body-axis freedom
about the X and Z axes with a simple geometric linkage. Fnr small
disturbances from initially level flighth th% difference between tl;lle -
equations of motion in principal axes (X' ,Z ) and gimbal axes (X, Zf)

is of second order. Reference 6 may be consulted for further details.
The relationships between the principal axis angula.: rates (p,r) and the
gimbal axis rates (§,¥) are

cos @ as ¥ (2)

It is convenient to transform the velocities to a space-fixed system to
correspond to the manner in which the data are presented. The transfor-
mation equations for the linear velocities are, from Figure 32,

U=U, cosTcosy +V 8in T coe ¥

£ siny +W

f f

V=-1U, (cos T sin ¥ cos ¢ + sin T sin @)
+ Vo cos ¥ cos¢+wf (cos N sin @ - sin T sin Y cos ¢)
W=TU, (cos N sin ¥ 8in ¢ - sin T cos ¢)

-V, (cos ¥ sin ¢) + W, (cos Mcos @ + sin T siny sin ¢, (3)
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For small perturbations about a symmetrical level flight condition and
neglecting second-order terms, these equations reduce to

U=Ufcos'ﬂ+wfsin'f]
A Ac Uof[(COS M)y + (sin M) @] + v,
w=-UfsinT]+wfcos'ﬂ_ (1)

Restricting the perturbation degrees of freedom to motions along the Yf.
axis and about the X" and Z_. axes (as considered in this report) and
noting that U, 1is finite, these expressions further reduce to

f
U= e cosﬂ=Uo
Ak PG Uof [(cos M) ¥ + (sin M) ¢]
W= - Uy sinfl =¥, (5)

Note that W, is the same W, that appears as the coefficient of p in the
Y-force expression of equations (1).

Substituting the relations (2) and (5) into (1),

\'rf - Yy + Yy, Uof (cos M) ¥ - (g - Y, Uof sinM) ¢ =0

-vaf-Lr§'+LvUof (cosn)Y+8-Lpé+LvUof (sinM) ¢ =0

- Ny + ¥ - N ¥ + Ny U, (cosTl)q/-xxlp<is+NVUof (sin) =0  (6)

Because of certain features of the model and the apparatus, three modifi-
cations to these equations are necessary such that they will apply to all
test conditions.

1. The linkage required to attach the model to the lateral servo
carriage and mounting system used for this type of testing
provides the lateral translational degree of freedom and con-
tributes an additional mass m, that "flies" along with the model

and, therefore, also must be accelerated by the model. The

linkage is relatively small in weight compared to the "flying"
weight of the model but nevertheless should be accounted for by
additional mess terms in the equations of motion. If m, is the
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total mass of the model resting on the pivot axis, then the total
accelerated mass in the lateral direction m, is equal to ) + m, .

This mass is larger than the trim vertical aerodynamic force on
the model divided by the acceleration due to gravity. For
analysis purposes the "flying" mass is considered to be the
vertical aerodynamic force divided by the acceleration due to
gravity. This value was et by the conditions of the longitudinal
tests of Reference 2. This dynamic model-mount characteristic
requires the modification of all terms in the side force equation,
except the. acceleration term, by a mass ratio defined as m}mt

and equai to 0.970 in value.

In certain of the test conditions as indicated in Table III, the
center of gravity of the model was not located at the pivot axis
of the model. Equations (6) may be considered to be written
about the pivot axis of the model, which represents the full-
scale center-of-gravity position about which the derivatives are
determined., Additional terms are necessary in the equations of
motion to account for the displacement of the moudel center of
gravity. These are

Z
AL. =+ <& 7p
v I
cg X
X
C
an, = - g Pp
cg Iz
W 2z
oL = - 2 (7)
cg Ix

where mp and Wp are the pivoting mass and pivoting weight of the
model respectively.

Mechanical springs were added about the model roll axis and the
model yaw axis to produce oscillatory motions in some single-
degree-of-freedom tests. The following terms should be added
for these tests:

k
AL =] [= ﬁn
O o
ky
AN, = - =2 (8)
b I

z
The values of the spring constants are given in Table III.
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y With these modifications, the equations of motion that apply to the ex-
b periments are

et

Qf S 5% Yo, é% ¥ Uof (cos M) ¥ - i (8 - Y, Uof gin ) ¢ = 0

£ P Y o+ L, U, (cos M) ¥ + a - Lp é

-w{r-Lv
I v

b¢ f
' kK
® W, z
3 +l—=+1 U sinn+2=Elp=0
: I v e i
X f X

X m .o .
C . m

-Np¢'5+NvUof (sin M) ¢g=0  (9)

For the restricted degree-of-freedom tests, the following reduced sets of
equations apply.

1. In two degrees of freedom, with kY = k¢ =0
m m

8. Ve, ¢ (Y =0)

. m m
Vo-=—Yv,-—(g-Y U sinT)¢=0
f my vef my v of

Zo . . . Wy 2z, _
-_gx_mpvf-l"vvf+¢'1~p¢+ LVUofs'inﬂ’f-IJ-I-x—s =0

(10)

b. ¢, Y (vf = 0)
- L, Y+ L, Uof (cos M) Y + ¢ - Ly ¢
¥y Zeg)
+ (1, U, sinn+-P—z£5 =0
f Ix /
'f-n,*n«vuof (coa'ﬂ)Y-Npé+NvU°f (sin 1) ¢ = 0

(11)




—
v it

2.

In the single-degree-of-freedom experiments with mechanical
springs, the equations of motion are

a. ¢ Y=0,v

f
k¢m . W, Zq
t Uo mn+u1x =0 (12)
b. Y (¢ = f=
;-Nr‘i'+ NVUofcosﬂ-i-I—zm Y=0 (13)

In the single-degree-of-freedom tests without mechanical springs,
the equation of motion is

a. Y (¢=o,vf=o,kym_

Y'Nr‘;*'NvUof (cos )Y =0 (14)
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Notes:

Xf- Y' -Z' are space fixed axes; Xf— Yf plane is horizontal.
i,—?, —2, are space fixed axes,initially aligned with principol axis of vehicle.
X —Y"—2Z" are principol axes of vehicle.

U,vand W are for small perturbations about level symmetrical flight.

Figure 31. Model Axes Systems and Variables for Forward Flight
Lateral/Directional Tests.
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